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Data Opportunity

Many countries adopt open government initiatives
Several datasets published
Demographics
State affairs
+ Votes and elections
Unique opportunity
Get a better understanding

Build tools useful to others



Voting Data

News agencies, political parties, and polling institutes are all
interested in understanding voting behaviors

Will the next vote pass easily?
What makes two regions vote similarly?

Where should we focus our efforts?



Dataset

Vote results from Switzerland

Issue votes between 1981 and 2014
Outcome (% of “yes”) at the municipality level
281 votes
13 features: voting recommendation of the main parties
2352 regions

25 features: languages spoken, demographics, etc.

Data available at http://vincent.etter.io/dsaal16
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Similarities Between Results




Online Predictions

+ On the day of the vote, regional results are released in

sequence
+ Use published results to predict others

+ ... and refine the prediction as more results are published?



Our Approach

Use a matrix-factorization model to capture the bi-clustering
Add region and vote features

Reduce the cold-start problem

More interpretable

Build the model incrementally to assess the effect of each
component



Our Model
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“dn = +  viu,
LIN(F) Zdn =
LIN(V) Zdn =
LIN(r) + LIN(v) Zdn =
MF Zdn = + ol
MF + LIN(r) Zdn = + \olu,
MF + GP(r) Zdn = fin + /GP(z4) + vlu,
MF + GP(r) + LIN(V) zan = + olu,

>\57)\’77>\u7>"u

0,0, )\



Performance Evaluation

- Last 50 votes as test data

- Simulate 500 random reveal order

+ Last 10% of regions as test regions
+ Observe increasing number of regions

+ Predict result of test regions
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Interpretation
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Summary

Individual models have different strengths

Vote features regression for cold start

Region features and bi-clustering when more observations
Bayesian methods are useful

Proper hyperparameters setting

Accurate and interpretable results
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Thank you!

Code and data available at

http://vincent.etter.io/dsaa16

Any questions?
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