Launch Hard or Go Home! **Predicting the Success of Kickstarter Projects**

Vincent Etter, Matthias Grossglauser and Patrick Thiran

1. What is Kickstarter?

- Crowdfunding website launched in 2009
- People can create a page to raise money for a project:
 - ► They have to decide on a **funding goal** and a **campaign duration**
 - People pledge money to the project in exchange for various rewards
 - Backers are charged **only** if the funding goal is reached at the end of the campaign
- ► As of June 2013:
 - More than 42 000 projects funded
 - **\$555 million** raised
 - ► **4.1 million** of backers
- Only half of the projects reach their goal: can we predict which?

Predict success of a project based on its pledged money over time

• Use partial information: from time 0 to time t, $t \leq 1$ (trajectory)

k-Nearest Neighbors

5. Time-series Predictors

- ► Find the k projects that have the closest trajectories
- Predict success if the majority of them are successful, failure otherwise

Markov Chain

- Discretize the (time, money) space into a $N_T \times N_M$ grid
- Consider the pledged money M(n) at each time step n as a random variable
- Learn transition probabilities $P(n) \in [0, 1]^{N_M \times N_M}$ for each $n \in \{1, \ldots, N_T\}$:

 $\mathbb{P}(M(n+1) = m_{n+1} \mid M(n) = m_n, n) = P_{m_n, m_{n+1}}(n).$

ÉCOLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANNE

2. Project Example: «The Veronica Mars Movie Project »

- Project to create a movie sequel of a famous TV show
- ► Campaign lasted from March 13th to April 13th 2013
- Ambitious funding goal: \$2 million
- ► Huge success: **91 585** backers, **\$ 5 702 153** raised

3. Our Dataset

- ► Web crawler started in September 2012
- Automatically discovers new projects on the *Recently launched* page
- Regularly checks the status of live projects:
- Number of backers

6. Social Predictors

- ▶ Instead of using pledged money, use **social** features at time t
- Train a SVM classifier using project goal/duration and social features
- **Tweets**
 - Number of tweets/replies/retweets
 - Number of unique users that tweeted
 - Estimated number of backers (using tweet's text, e.g. "I just backed project X")

Co-backers graph

- Build a graph where vertices are projects
- Edges between projects represent common backers
- Extract several features from this graph:
 - Number of projects with common backers
 - Number/proportion of successful projects with common backers

- Money pledged
- Monitor Twitter in parallel to record mentions of Kickstarter
- Preprocessing:
 - Time is normalized to [0, 1]
 - Pledged money is normalized with respect to the project's goal

4. Dataset Summary

Projects	Backers	Pledges	Tweets
16 042	1 309 295	2 265 156	738 176

Average project statistics:

	Successful	Failed	Total
Number	7739	8303	16042
Proportion	48.24%	51.76%	100%
Goal (\$)	9595	34 693	22 585
Duration (days)	30.89	33.50	32.24
Number of backers	262	25	139
Final amount	216.60%	11.40%	110.39%
Number of tweets	73	20	46

Number of backers, number/proportion of first-time backers (i.e. with only one backed project)

Corresponding co-backers graph

7. Results

- Can we use social predictors to improve by the time-series ones?
- Train a SVM to combine the four individual predictions into one

Pledged money for successful/failed projects relative to their goal:

Laboratory for Communications and Applications Swiss Federal Institute of Technology in Lausanne (EPFL)