
Winter 2008-2009

Semantic Vector
Machines

—–
Master Thesis

in Communication Systems

Vincent Etter

Rés. Les Roseyres D12
1882 Gryon
Switzerland

vincent.etter@gmail.com

Responsible Professor: Supervisor:

Martin Hasler Ronan Collobert
Laboratory of Nonlinear Systems Department of Machine Learning
École Polytechnique Fédérale de Lausanne NEC Laboratories America, Inc.
1015 Lausanne, VD Princeton, NJ 08540
Switzerland USA

Abstract

We first present our work in machine translation, during which we used aligned
sentences to train a neural network to embed n-grams of different languages into
an d-dimensional space, such that n-grams that are the translation of each other
are close with respect to some metric. Good n-grams to n-grams translation re-
sults were achieved, but full sentences translation is still problematic. We realized
that learning semantics of sentences and documents was the key for solving a lot of
natural language processing problems, and thus moved to the second part of our
work: sentence compression. We introduce a flexible neural network architecture
for learning embeddings of words and sentences that extract their semantics, pro-
pose an efficient implementation in the Torch framework and present embedding
results comparable to the ones obtained with classical neural language models,
while being more powerful.

Acknowledgements

First of all, I would like to thank NEC Labs for allowing me to come for six months
to the United States and work on such an interesting project and in such an great
environment. This was a wonderful experience, both on personal and professional
levels. I met very interesting people at the lab, and had the opportunity to attend
fascinating talks all along my project.

I would also like to thank:
Ronan Collobert, for his support in both my professional and personal life.

He gave me great advice and feedback all along my project, and was always here
when I needed support with the fantastic Torch framework he created. He also
showed me some beautiful places in New Jersey and New York state, and even
shared his love of Quebec during a great trip there.

Jason Weston, for his help during the first part of my project.
Prof. Martin Hasler, for accepting to supervise my Master Thesis from EPFL,

taking the time to read my monthly reports and providing me with some helpful
feedback.

Contents

1 Introduction 5

2 Theory 7
2.1 Neural networks . 7

2.1.1 A sequence of operations 7
2.1.2 Backpropagation . 8
2.1.3 Stochastic Gradient Descent 10
2.1.4 Example: linear layer . 10

2.2 Transfer function . 11
2.3 Embedding . 11

3 Torch 15
3.1 Modular architecture . 15
3.2 Ease of use . 16

4 Translation 19
4.1 Europarl Parallel Corpus . 19
4.2 Using words only . 20

4.2.1 Network Architecture . 20
4.2.2 Training algorithm . 21
4.2.3 Loss function . 22
4.2.4 Performance evaluation . 22
4.2.5 Results . 24

4.3 Extending to n-grams . 27
4.3.1 Network architecture . 30
4.3.2 Results . 31
4.3.3 Discussion . 33

5 Compression 35
5.1 General Idea . 35

5.1.1 Compression . 36

3

Contents Contents

5.1.2 Extraction . 37
5.2 Dataset . 37
5.3 First approach: Auto-encoder networks 38

5.3.1 Auto-encoder networks . 39
5.3.2 Network architecture . 40
5.3.3 Local optimization . 40
5.3.4 Global optimization . 43
5.3.5 Results . 44

5.4 Second approach: Ranking . 45
5.4.1 Network architecture . 46
5.4.2 Loss function . 47
5.4.3 Implementation . 48
5.4.4 Results . 48
5.4.5 A look at the resulting embedding 52

5.5 Finding best tree . 53
5.5.1 Greedy algorithm . 53

6 Conclusion 57
6.1 Future work . 57

6.1.1 Translating whole sentences 58
6.1.2 Improving the greedy algorithm 58

Bibliography 60

4

Chapter 1
Introduction

This report covers our Master Thesis project at NEC Laboratories America, in
Princeton, New Jersey, which was done from September 8th, 2008 to March 13th,
2009. This project was about Machine Learning and Natural Language Process-
ing. Machine Learning is the field that studies the design and implementation of
algorithms that allow computers to improve their performances over time based on
data, whereas Natural Language Processing is a field of Computer Sciences con-
cerned with the interaction between computers and human (natural) languages.

At the intersection of these fields, many tasks are found: semantic role label-
ing, name entity recognition, etc. We focused on two of them, that are Machine
Translation and Sentence Compression. Machine translation has become more
and more popular in the last years, mostly because of the huge quantity of data
available on the Internet in other languages. People want to be able to read the
latest news on a Japanese website, or to understand a new recipe from the blog
of a Peruvian chef. To do so, they need tools that will translate for them all
these texts from various foreign languages to their mother tongue. We will try to
address this problem in the first part of our project, by building an automated
tool that learns how to translate from one language to another.

Sentence compression, or more generally semantic extraction, is a field that
has become even more needed than translation. Indeed, we are in an information
era, where electronic devices are more than ever part of our lives, and generate
huge amounts of data: positions from GPS receivers, images from cellphones and
cameras, texts from blogs, temperatures from sensors, etc. With this continuous
flow of data, it has become impossible for humans to interpret it, or even sort it.
Thus, we need tools that are able to make sense out of this pile of unlabeled data,
to organize it. Semantic extraction aims to extract a representation of some data
(in our case, text data) that gives information about its meaning. We will try,
in the second part of our project, to build such tool, that embeds any text into

5

Chapter 1. Introduction

a d-dimensional space in a way that this representation contains all the features
needed to get its meaning. With a tool like that, we would be able to easily
categorize, sort and cluster tons of information in an unsupervised way.

This report is organized as follows:
In chapter 2, we present some theoretical reminders on neural networks and

embedding, for readers that are not familiar with these concepts.
In chapter 3, we introduce the programming framework we used to implement

all the algorithms and neural networks we designed during this project: Torch.
In chapter 4, we describe the first part of our project, in which we build a neural

network that learns to translate from a language to another, by embedding words
and sentences into a d-dimensional space, using a corpus of aligned sentences in
both languages. The obtained results are then presented, and we conclude this
chapter by some considerations about the limitations of our model, and reasons
for redefining the problem and trying a new approach.

In chapter 5, we discuss the second part of our project, that focused on sentence
compression. We propose a new approach, that still relies on embedding, and
present the two main problems associated with it. A solution to each of them is
then presented, and the performances are compared to previous work in the field
on language models.

Finally, in chapter 6, we conclude this project and share some propositions for
future work.

6

Chapter 2
Theory

In this chapter, we introduce some important concepts that were used during our
project. They may not be directly related to each other, but will be referred to
in the next chapters and should thus be familiar to the reader.

2.1 Neural networks

A neural network is a mathematical model, based on biological observations, that
can be used for several different tasks, the most common ones being classification
and regression. It is built using layers of interconnected artificial neurons. These
artificial neurons simply take some input values and return a weighted sum of
them, sometimes after having applied a non-linear function to it. While a neural
network with only one layer is quite simple, adding a second layer allows the net-
work to approximate any function, assuming there are enough neurons per layer.
Thus, neural networks can be seen as universal approximators.

2.1.1 A sequence of operations

In general, we can express any network by a sequence of matrix-vector operations
and applications of non-linear functions, as illustrated in figure 2.1. For example,
the following equation describes a network with N inputs, H neurons in the second
layer (also called hidden layer) with a hyperbolic tangent transfer function, and
O outputs:

y = fθ(x) = W 3tanh(W 1x+ b1) + b3

where θ = (W 1, b1,W 3, b3), x ∈ RN the input of the network, W 1 ∈ RH ×RN

and b1 ∈ RH the weights and bias of the hidden layer, W 3 ∈ RO×RH and b3 ∈ RO

the weights and bias of the output layer.

7

2.1. Neural networks Chapter 2. Theory

Figure 2.1: Decomposition of a neural network into a sequence of matrix-vector
operations and function applications.

2.1.2 Backpropagation

When training a neural network, we want to optimize it with respect to a function
R, called the expected risk :

R = Ex[Cw(x)]

where Cw(x) is a loss function that measures the performance of the network
with respect to the given input x and its current weights w. We cannot minimize
the expected risk directly, as we do not know the distribution of x. However, it
is proven that it is sufficient to minimize an approximation of the expected risk
over a finite set of N training samples:

R∗ =
1
N

N∑
i=1

Cw(xi)

To do so, we usually use a gradient descent technique: for each sample, we
estimate the loss and compute the gradient ∂C

∂wl
jk

, that gives the error for each

weight jk of each layer l. Then, we simply apply a scaling factor γ to this gra-
dient, called learning rate, and subtract it to each weight. This gradient descent
algorithm is a well-known optimization technique, which allows to find a local
minima pretty quickly (depending on the learning rate).

This means that we want to calculate ∂C
∂wl

jk

, the gradient of each weight of a

given layer, for all layers. This gradient can be rewritten as:

8

Chapter 2. Theory 2.1. Neural networks

Figure 2.2: Illustration of the backpropagation: each layer l receives the gradient
∂C
∂ml from the next layer, uses it to compute all ∂C

∂wl
jk

and backwards ∂C
∂ml−1 to the

previous layer to continue the chain.

∂C

∂wljk
=

∂C

∂ml

∂ml

∂wljk
(2.1)

where ml is the function applied at layer l (e.g. a matrix-vector operation).
The second term of the above equation is known, but we cannot compute the first
one from scratch at each layer. However, we can rewrite it as:

∂C

∂ml
=

∂C

∂ml+1

∂ml+1

∂ml
(2.2)

where ml+1 is the operation applied at layer l+ 1. As the first term is known
for the last layer of the network (it is the gradient of the loss function), we can
use this property to iteratively compute ∂C

∂wl
jk

at each layer l and then propagate
∂C
∂ml to the previous layer, to allow it to do its own computations. The procedure
for each layer l, illustrated in figure 2.2, is thus:

1. Receive ∂C
∂ml from next layer

2. Compute all ∂C
∂wl

jk

using equation 2.1

3. Compute ∂C
∂ml−1 using equation 2.2

4. Propagate ∂C
∂ml−1 to previous layer

This algorithm is called the error back propagation algorithm, and has been
used for years to train multi-layer neural networks.

This means that we can legitimately consider each layer of our networks as a
”black box”, or a module, that takes some inputs and gives some outputs. We
can forward data through it, and get the backpropagated gradient ∂C

∂ml from it
without actually knowing what it does or how it does it. This observation is at the
origin of the modular architecture of the Torch framework that we used during
our project and that is described later in chapter 3.

9

2.1. Neural networks Chapter 2. Theory

2.1.3 Stochastic Gradient Descent

As explained in section 2.1.2, we want to optimize an approximation of the risk
over N training samples. To do so, we first forward the whole dataset through the
network, sum the gradients for each sample, and finally update all the weights of
the network:

wt+1 = wt − γ
1
N

N∑
i=1

∂C(xi)
∂wt

where wt are the weights of the network at the current iteration, and wt+1 are
the weights for the next iteration. In practice, however, we use a technique called
stochastic gradient descent (see [2] for more details). This technique consists in
estimating the gradient of the whole dataset by the gradient of only one sample.
This means that instead of considering all training examples before updating the
weights, we do it after each of them:

wt+1 = wt − γ
∂C(xi)
∂wt

This results in a faster convergence speed. Indeed, calculating the gradients
on the whole dataset in the first iterations is a waste of time, because the network
was randomly initialized and will thus certainly have a huge error on each sample.
For this reason, we used stochastic gradient descent in all our experiments.

2.1.4 Example: linear layer

We will now give as example the calculations described in section 2.1.2 for the
case of a linear layer:

ml(x) = W lml−1(x) + bl

where W l ∈ Rm×Rn and bl ∈ Rm. This linear layer has thus n inputs and m
outputs. When applying the backpropagation algorithm, it receives ∂C

∂ml from the
next layer. We can rewrite the above equation as:

ml(x) = (W l
1|W l

2 · · · |W l
n)

ml−1

1 (x)
ml−1

2 (x)
...

ml−1
n (x)

+

bl1
bl2
...
blm

where W l

k are the columns of W l. Thus, ml
j(x) =

∑n
k=1W

l
jkm

l−1
k (x). We can

then compute:

10

Chapter 2. Theory 2.2. Transfer function

∂C

∂W l
jk

=
∂C

∂ml

∂ml

∂W l
jk

=
∂C

∂ml
xk

∂C

∂blj
=

∂C

∂ml

∂ml

∂blj︸︷︷︸
=1

=
∂C

∂ml

∂C

∂ml−1
k

=
m∑
j=1

∂C

∂ml
j

∂ml
j

∂ml−1
k︸ ︷︷ ︸

=W l
jk

=
m∑
j=1

∂C

∂ml
j

W l
jk

=
∂C

∂ml
·W l

k

2.2 Transfer function

A common and widely used transfer function for hidden neurons in a non-linear
neural network is the hyperbolic tangent. In our project, following the work
of Ronan Collobert, we chose to use a variant of this function, called the hard
hyperbolic tangent, and defined as follows:

hardTanh(x) =

1 if x > 1
x if −1 < x < 1
−1 if x < −1

The two functions can be compared in figure 2.3. This substitution allows
the hidden neurons to saturate faster, and thus puts the network in a non-linear
mode sooner during the training process. Moreover, being much more simpler to
implement than tanh(x), hardTanh(x) is faster to compute and thus makes our
experiments run more quickly.

2.3 Embedding

When processing text using neural networks, one faces an important problem:
these networks take real numbers as input, and not words. How could we convert

11

2.3. Embedding Chapter 2. Theory

Figure 2.3: Comparison of the tanh(x) and hardTanh(x) functions.

the words into something usable by multi-layer perceptrons? We could simply
replace each word by its index in a dictionary. While this approach would work,
the main disadvantage is that it reduces greatly the information contained in the
input: a simple number clearly cannot hold all the information contained in a
word. Thus, we need a representation that still contains all the features of the
original word, while being understandable and processable by a neural network.

A solution to this problem was introduced by Yoshua Bengio in [1]. In this
article, he presents a way of mapping words to vectors in a d-dimensional space
(typically, real-valued vectors in Rd). The mapping from words to vectors is in-
cluded in the neural network architecture, and the values of the vectors are learned
during the training process. Collobert et al. refined this method in [6].

This technique is implemented as a module in Torch1, named LookupTable. It
allows to learn and compute the mapping ofN different words into a d-dimensional
space. In practice, getting the weight vector wi corresponding to a given word i
simply consists of a lookup in the table. However, it can be easily written as a
matrix operation, to be later included in the matrix calculations that formalize a
multi-layer perceptron, as explained in section 2.1:

wi = W ∗

0
...
0
1
...
0

 ← ithrow

1See chapter 3 for more information about the Torch framework.

12

Chapter 2. Theory 2.3. Embedding

where W is a d×N matrix which is multiplied by a very sparse vector of size
N that is one only on the ith row and 0 everywhere else. Basically, the above
formula extracts the ith column of the matrix W .

The important fact that one should remember with these lookup tables is that
the elements of W , i.e. the weights of the word vectors, are trained and learned
jointly with the rest of the network !

13

14

Chapter 3
Torch

All the implementation part of this project was done using Torch 51, an open-
source machine learning framework written in C and Lua. This framework was
originally developed by Ronan Collobert et al. (see [5]) at the IDIAP Research
Institute in Switzerland. It provides a Matlab-like environment for state-of-the-
art machine learning algorithms, with a very efficient implementation. Moreover,
thanks to its modular architecture, it allows to easily add new algorithms or to
change the behavior of any existing component. This chapter is a small intro-
duction to this framework that gives some insight about its power and ease of
use.

3.1 Modular architecture

The framework is divided in several packages, that each provides tools for spe-
cific tasks. The main package we used is nn2, which contains everything needed
for building a feed-forward neural network and training it using backpropagation
techniques. When using such multi-layer networks, each layer can be considered
as a separate entity. Indeed, the only data we need when forwarding through
a given layer is the output values of the previous layer. Similarly, when back-
propagating the error through the network, all we need to update a given layer is
the gradient values coming from the next layer, as explained in section 2.1.2.

This observation allows to use each layer of the network as a Module (as called
in the Torch framework). A Module has some generic methods used for forwarding
data or backpropagating gradients. This allows to see them as ”black boxes” and
chain them, regardless of their content (they can be linear layers, convolutional
layers, or even a complicated sequence of non-linear layers). The nn package pro-
vides containers for such modules that allow to build a sequence of several layers

1See http://torch5.sourceforge.net for more details
2http://torch5.sourceforge.net/manual/nn/index-1.html

15

http://torch5.sourceforge.net
http://torch5.sourceforge.net/manual/nn/index-1.html

3.2. Ease of use Chapter 3. Torch

−− b u i l d i n g mlp
mlp = nn . Sequent i a l ()
mlp : add (nn . Linear (3 , 5))
mlp : add (nn . Tanh ())
mlp : add (nn . Linear (5 , 1))

−− c r ea t i n g input
input = lab . random (3) −− random Tensor o f s i z e 3

−− forward input
output = mlp : forward (input)

Figure 3.1: Example of basic Torch usage: we first create a Sequential, which is
a container that allows to build a sequence of layers. Then, we successively add a
linear layer with three inputs and five outputs, a non-linearity, and finally a linear
layer with five inputs and one output. The resulting network is pictured in figure
3.2. After creating the network, we feed it with a random-valued input and get
the corresponding output.

very easily, along with implementation of the most commonly used layers (linear
layer, convolutional layers, etc.).nal layers, etc.).

Torch also provides an efficient implementation of matrices of any dimension
(called Tensor) and operators for performing several mathematical, statistical and
manipulation operations on them. Finally, as each module implements forwarding
and backwarding methods, it allows to train the created network very easily,
using gradient descent technique. One can create a custom loss function, or use
one of the criterions that are already implemented in Torch (mean-squared error,
negative log-likelihood, etc.).

3.2 Ease of use

Figure 3.1 shows a code snippet describing how to create a simple non-linear
multi-layer perceptron with three inputs, five hidden neurons with an hyperbolic
tangent transfer function and one output. The resulting network is illustrated in
figure 3.2. This should give the reader an idea of how simple it is to word with
neural network using Torch.

16

Chapter 3. Torch 3.2. Ease of use

Figure 3.2: Non-linear multi-layer perceptron corresponding to the code snippet
in figure 3.1, with tree inputs, five hidden neurons with an hyperbolic tangent
transfer function and one output.

17

18

Chapter 4
Translation

The first part of our project is about machine translation. This field of research
has been of high interest for many years. With Internet, everybody has access to
resources in several different languages. Moreover, with cheap air travels, it has
become very easy to fly to foreign exotic countries, often with completely differ-
ent language and even alphabet. Thus, the need for efficient translation tools is
greater than ever.

Different approaches exist to this problem, with more or less success. State-of-
the-art translation tools, such as Google Translation1, are mainly based on ”map-
ping tables” : when given a sentence to translate, it looks into a huge database to
find a sentence (or part of a sentence) for which it knows the translation. Then,
it combines the known translations to build the final sentence. While this solu-
tion gives satisfying results, the main drawback is that it requires to possess the
mapping table. Big companies like Google may have enough available data to
build such database, and the infrastructure to store and use it, but it is clearly
not feasible for individuals.

Our solution to the translation problem is to train a neural network to embed
words and sentences into a d-dimensional space. In this space, words or sentences
having a close meaning will be close to each other, regardless of which language
they belong to. This way, translating a word would be as easy as finding the
closest word of the other language in the embedding space.

4.1 Europarl Parallel Corpus

To train such a task, we need a dataset of aligned sentences, i.e. pairs of sen-
tences in two different languages, that are the translation of each other. There

1http://translate.google.com

19

http://translate.google.com

4.2. Using words only Chapter 4. Translation

are not many of these available on the Internet, but fortunately some countries
have several official languages, and thus translate all their official documents into
each of them. This holds also for the European Union, which publishes its official
documents in the language of each country that belongs to it. This is a great
opportunity for machine translation, as it provides parallel datasets for transla-
tion to and from a lot of different languages, whereas the other available data is
usually limited to a few common languages (e.g. English and Spanish).

The Europarl Parallel Corpus2 is extracted from the European Parliament
proceedings, and contains versions in eleven different languages. It is distributed
in a structured form, and also provides tools to generate sentence aligned data
(see [8] for more details). Such data consists of one text file per language, in which
the ith line of each file correspond all to the same sentence, thus allowing to learn
how to translate from one the others.

As we needed to be able to assess the quality of the results during our ex-
periments, we focused on English/French translations. However, our approach
is language independent, and thus could be used with any languages for which
aligned sentences are available.

4.2 Using words only

The first approach we used can be seen as a ”bag of words” model: for each
sentence, we consider its words separately, without taking into account their order.
As described in the section 2.3, we embed the words into a d-dimensional space
to process them. The weights of the vectors representing each word are randomly
initialized, and trained during the learning process. To represent a sentence in
this embedding space, we simply use the mean of all of its words.

4.2.1 Network Architecture

Figure 4.1 shows a diagram representing the architecture of the multi-layer per-
ceptron we used to learn the translation task. As input, it receives a pair of two
sentences, one in each language. Each word is represented by its index in a global
dictionary, which has been computed offline and is constant for each language.
The first stage of the network runs the list of indices through a lookup table,
which replaces each word by its d-dimensional representation in the embedding
space, as described in section 2.3. The output of the lookup table is thus a d× l
matrix, where d is the dimension of the embedding space and l the length of the
sentence.

Then, we take the mean of all its words as the representation of the whole
sentence. These operations are done in parallel to the two sentences in each

2Available at http://www.statmt.org/europarl/

20

http://www.statmt.org/europarl/

Chapter 4. Translation 4.2. Using words only

Figure 4.1: Architecture of the multi-layer perceptron used to learn En-
glish/French translations. Two sentences, one in each language, are forwarded
in parallel through a lookup table, to replace words by d-dimensional vectors.
Then, we take the mean of the vectors of each sentence as their representation,
and compute the distance between these two representations, to use it as a score.

language. Finally, we measure the distance between the two sentences in the
embedding space, and use this measure to assign a score to this particular pair
of sentences (a short distance between the encoded representations means a high
score, whereas a big distance means a low score).

4.2.2 Training algorithm

The basic idea used for the training is that two sentences that are the transla-
tion of each other (we call such a pair ”corresponding sentences”) should have
representations that are close to each other in the embedding space (i.e. a high
score), whereas two random sentences should be far from each other (i.e. have a
low score). To do so, we train a network composed of two copies of the network
described above, as shown in figure 4.2. For each line i of the aligned corpus, we
generate two samples: a positive one, that contains the ith English sentence and

21

4.2. Using words only Chapter 4. Translation

Figure 4.2: Global architecture of the neural network. We take two instances of
the network described in figure 4.1 and feed them with one positive sample (two
corresponding sentences) and a negative one (the corresponding French sentence
as been replaced by a random one). We compare the two scores obtained as
output, and want the score of the positive sample to be higher than the score of
the negative one.

the ith French sentence, and a negative one, that contains the ith English sentence
and a randomly chosen French sentence. We forward these two examples through
the network and compare the resulting scores.

4.2.3 Loss function

We use a margin ranking criterion as loss function. This criterion can be formal-
ized as follows:

Lw(x) = max(0,m− fw(xpos) + fw(xneg))

where xpos and xneg are respectively the positive and negative samples de-
scribed above, and m is a fixed margin. This loss functions optimizes the network
such that scores of positive samples are bigger than scores of negatives sample
with a given margin. T he value of the margin is arbitrary, the weights of the
networks being dynamically adjusted. However, experiences have shown that the
convergence speed is actually affected by this value. We thus empirically chose
the square root of the dimension d as a margin in our experiments.

4.2.4 Performance evaluation

To evaluate the performance of our network, a good metric would have been to
compute the ranks of each pair of corresponding sentences and average them. The

22

Chapter 4. Translation 4.2. Using words only

rank of a given pair of corresponding sentences { english[i], french[i] } is
defined as follows: it as a rank k if french[i] is the kth closest French sentence
to english[i]. Algorithm 1 describes how this rank is actually computed.

Algorithm 1 Computes the rank of corresponding sentences i
distances ← {}
codeEnglish ← embed(english[i])
for j = 1 to N do

codeFrench ← embed(french[j])
distance ← computeDistance(codeEnglish, codeFrench)
distances[j] ← { j, distance }

end for
sort(distances) {sorts the array on its second column in descending order}
for j = 1 to N do

if distances[j][1] = i then
return i

end if
end for

If our translations were prefect, we would get an average rank of one, meaning
that for each English sentence, the closest French sentence is the actual corre-
sponding sentence. However, with 1’200’000 sentences in the train set and nearly
160’000 sentences in the test set, computing the real rank of each sentences pair
would be quite time consuming, even if restricted to the test set only. Therefore,
we needed an approximation of the actual rank that was fast to compute.

We thus came with a method for statistically estimating the average rank. To
do so, we use a limited number M of randomly chosen French sentences instead of
the whole dataset, and count how often the corresponding sentences have a shorter
distance that the English sentence and one random French sentence. Algorithm
2 describes this process more in details. We ran experiments with different values
of M and discovered that it was actually sufficient to compare the corresponding
sentences to only one random pair to have a decent estimation of the performance,
thanks to the great number of both train and test samples.

More formally, we defined the following indicator function:

1w(xpos, xneg) =
{

1 if fw(xpos) > fw(xneg),
0 otherwise

where xpos is a ”positive” sample composed of two corresponding sentences {
english[i], french[i] }, xneg a ”negative” sample { english[i], french[j]
} (j being randomly chosen) and fw(x) computes the rank of a given pair of sen-
tences. Then, our measure estimates the following:

P (w) = E[1w(xpos, xneg)]

23

4.2. Using words only Chapter 4. Translation

Algorithm 2 Estimation of the performance using M random samples instead
of the whole dataset

estimator ← 0
for i = 1 to N do

codeEnglish ← embed(english[i])
codeFrench ← embed(french[i])
distance ← computeDistance(codeEnglish, codeFrench)
allFurther ← TRUE
for j = 1 to M do

codeRandom ← embed(french[randomNumber(1, N)])
distanceRandom ← computeDistance(codeEnglish, codeRandom)
if distanceRandom < distance then

allFurther ← FALSE
end if

end for
if allFurther then

estimator ← estimator + 1
end if

end for
return estimator / N

4.2.5 Results

We first used the dot product as the measure of the similarity between two sen-
tences:

d(x, y) =
d∑
i=1

xiyi

From the work of Collobert et al. in [6], we started our experiments with a
dimension of fifty for the embedding space. We also ran different experiments,
with higher and lower dimensions, to compare the results.

The first results we obtained are shown in figure 4.3. This plot displays the
estimated performance evaluated on a test set of 10’000 sentences, with different
dimensions d of the embedding space. The best result obtained shows a perfor-
mance of 95%, which means that we would translate incorrectly a sentence 5%
of the time. While this may look like a good result, earlier experiments made by
Jason Weston showed that an error rate as low as 0.5% could be reached. After
comparing our setups, we quickly found the difference between our experiments:
he was using the L1 distance as measure, whereas we were using a dot product,
which is equivalent to a L2 distance. As our measure gave more importance to
great errors, some misaligned sentences in the data may have prevented our net-
work to converge correctly.

24

Chapter 4. Translation 4.2. Using words only

Figure 4.3: Performance estimation of the network using words only and the dot
product as measure of the distance, in function of the number of iterations, with
several dimensions d. Interestingly, the yellow curve shows that using a margin
of 1 instead of

√
d yields worse performances.

Figure 4.3 also showed something interesting: the experiments with a margin
set to one instead of the square root of the dimension d gave much worse results
than the others. We did some more tests on the influence of the value of this
margin. The results, presented in figure 4.4, indicate that our empirical choice√
d as the margin of the criterion was good. While certainly still converging to

the same result with other values, our margin allowed to converge faster.

We changed our measure to the L1 distance, defined as follows, and ran again
our experiments:

d(x, y) =
d∑
i=1

|xi − yi|

This time, we obtained much more satisfying results, as illustrated in figure
4.5. This figure shows the estimated performance on the test set of the same
network, using a dimension d = 50 of the embedding space, but with the two
different measures. While we obtained an error rate of 5.5% with the dot product
as measure of the distance, using the L1 distance instead allowed to reduce it to
0.03%. After checking by hand which were the remaining errors, we discovered

25

4.2. Using words only Chapter 4. Translation

Figure 4.4: Comparison of the performances of the network on words only, using
several margins for the criterion, in function of the number of iterations.

26

Chapter 4. Translation 4.3. Extending to n-grams

Figure 4.5: Comparison of the performances using the L1 and L2 distances on
words only, in function of the number of iterations, with an embedding dimension
d = 50.

that they were inherent to the dataset. Indeed, it contains misaligned sentences,
leading to samples that are impossible to translate correctly.

We compared the results of the L1 distance with several dimensions d in figure
4.6, to see if we could reach better performances with higher embedding dimen-
sions. While dimensions smaller than fifty clearly showed reduced performances,
the results suggest that with dimensions of one hundred and above, the perfor-
mances are not constrained by the lack of complexity of the network, but rather
by our ”bag of words” approach.

Figure 4.7 shows some English words and the closest French word in the em-
bedding space, for a dimension d = 50. While these translations look correct,
the really interesting result is obtained when looking at the other closest words
in both languages, as pictured in figure 4.8. We see that the embedding learned
by the networks groups words that are similar, or related.

4.3 Extending to n-grams

Once we had obtained satisfying results considering words only, we extended our
architecture to include more features in our learning process. Indeed, as explained
above, using the mean of the sentence as its representation in the embedding space
makes our approach similar to a ”bag of words”, in the sense that we lose the in-
formation about the order of the words, and their relation to each other. In order
to address this problem and use as much information as possible in our solution,

27

4.3. Extending to n-grams Chapter 4. Translation

Figure 4.6: Performance estimation of the network using words only and a L1
distance, in function of the number of iterations, with several dimensions d.

european européenne
commission commission
president président
between entre
against contre
human humains
years années
great grand
madam madame
increase augmenter
turkey turquie
create créer
sustainable durable

Figure 4.7: Example of some English words and their closest French word in the
embedding space.

28

Chapter 4. Translation 4.3. Extending to n-grams

european européenne commission commission
union européennes committee comité
eu européen recommendations recommandations
integration union council commissions
europe européens proposal conseils
citizenship ue advice comités
europeans institutions recommendation consultatif
enlarged intégration document conseil
constitution élargie consultation document
unity démocratique dg présentées
human humains between entre
rights droits links relation
violations homme among lien
minorities violations link bilatéral
religion humain relationship bilatérales
freedoms humaine amongst liens
religious religieuse sides différences
crime humaines bilateral renégocié
violence dignité differences bilatéraux
liberties religion stakeholders différentes
great grand turkey turquie
tremendous grande cyprus chypre
greatly beaucoup turkish chypriote
enormous grands ukraine turque
huge énorme belarus turcs
immense fortement iraq turc
extremely énormément georgia nations
greatest immense cypriot turques
vast considérables democracy référendums
considerable extrmement membership chypriotes

Figure 4.8: Sample of the embedding results: the header lines show English words
and their closest French word in the embedding space. The other lines show the
nine closest words in both languages to the corresponding English words on the
header line.

29

4.3. Extending to n-grams Chapter 4. Translation

Figure 4.9: Extended version of the network shown in figure 4.1 to include pairs
into the calculation of the score. N-grams of other sizes can obviously be included
similarly.

we added lookup tables for the pairs of words, trigrams, and so on. We could
virtually include n-grams of any size, but did most of our testing using n-grams
of length one and two (words and pairs of words).

4.3.1 Network architecture

Figure 4.9 shows the modified architecture of the network that was presented in
figure 4.1. We simply added a second network in parallel, this time using pairs of
words instead of words only, with their own lookup tables. Each pair is replaced
by its index in a dictionary, then mapped to its representation in the embedding
space. As with words only, the mean of all these representations is then taken to
get a representation of the sentence. This process is applied to both English and
French sentences and the L1 distance between the two encoded representations is

30

Chapter 4. Translation 4.3. Extending to n-grams

computed. Finally, we sum all these distances to obtain the global score of this
particular pair of sentences, using words and pairs of words. We actually added
more networks to train the translation from pairs to words (and vice-versa), and
to learn the similarities between n-grams of different sizes in the same language.
Note that we could easily take into account more n-grams by simply adding more
of these networks in parallel, each having their own lookup tables for a given size
of n-gram.

The network is still trained with the same criterion as pictured in figure 4.2:
we have two copies of the network described above, and feed the first with cor-
responding sentences, while the other is given the same English sentence with a
random French sentence. We want the score of the corresponding pair to be bigger
than the score of the random pair. Moreover, to accelerate the training, we do
not train all networks with each sample, but rather randomly select one network
to train with each example between:

• all combinations of languages (English↔ English, English↔ French, French
↔ French)

• all combinations of sizes of n-grams (words ↔ words, words↔ pairs, pairs
↔ words, pairs ↔ pairs)

For example, we may train the network to translate French pairs to English
words at one step, and then train it to map English words to English pairs at the
next step.

4.3.2 Results

Figure 4.10 shows the estimated performance of the extended version of the net-
work, with different dimensions d of the embedding space. For each dimension,
we estimated the performance once using the words only, like we did with the
simple version of the network, and then using both words and pairs of words to
compute when computing the distance, as described above. We see that this sec-
ond evaluation gives at first worse results than using words only, regardless of the
dimension, certainly because it gives more information and thus needs more time
for the network to adjust. After enough iterations, however, it gives the same re-
sults as using words only, and it shows even better performance afterwards (this
is particularly visible on the curves of dimension d = 25, where the blue-crossed
line starts under the green-crossed one, but finally gets over it). We also see that
while having smaller dimensions d of 25 or 50 is too limited and does not allow
the network to fully represent the complexity of the problem, dimensions of 150
and higher have approximatively all the same performances.

Again, when looking at the closest French words of a given English word,
we obtain good translations, as seen with the previous networks. This also works

31

4.3. Extending to n-grams Chapter 4. Translation

Figure 4.10: Estimated performance of the extended network in function of the
number of iterations, with different dimensions d of the embedding space. For
each experiment, we estimate the performance once using words only, then using
words and pairs.

32

Chapter 4. Translation 4.3. Extending to n-grams

of course course in particular particular
course , naturally particular , particularly
obviously , obviously , particularly especially
but , but , especially including
but it nevertheless particularly in areas
nevertheless , though especially in specifically
but there certainly , including education
but that however and in concerned
naturally , well concerned , special
, but nonetheless areas , regions
public health health united states united
health and protection the usa usa
health . environment the us america
consumer protection safety the united states
the health consumer states of nations
the protection environmental states , country
of public quality the country countries
protection of public states and candidate
the environment protecting countries which membership
protection . competition eu member american

Figure 4.11: Samples of the embedding space learned by the extended network
with a dimension d = 150. The header lines show chosen English pairs along with
their closest English word, and the next lines show the other closest pairs and
words to the chosen pairs.

with pairs of words, allowing us to directly translate English pairs to French pairs,
and vice-versa. Moreover, we can look for results in the same language, i.e. see
which English n-grams are close to a given English n-gram. Figure 4.11 shows a
few chosen English pairs and the closest English words. While some are simply
variations of the two words of the pair, examples like ”especially” being close
to ”in particular” makes us think that the network actually learned about the
meaning of the words themselves, instead of simply building a English/French
mapping.

4.3.3 Discussion

We are convinced that we could get even better results with this network simply
by letting it train longer, as the results on the test set are clearly still increas-
ing. However, while we obtained good translations for words and pairs of words,
translating new sentences is far from obvious. Indeed, when presented with a new
English sentence, we can embed it in the d dimensional space using our neural
network. But how could we actually find the corresponding French sentence?
Clearly, we cannot list all possible sentences and pick the one that is the closest.
We will present some ideas for solving this problem in chapter 6.

33

4.3. Extending to n-grams Chapter 4. Translation

At this point, we realized that while we learned good mappings from n-grams
to n-grams, our approach was not so different then the ones presented in the
introduction of this chapter. Our embeddings are compressed representations
that captured some of the meaning of the sentences, but we felt that this was not
enough. Indeed, it is more interesting to focus solely on learning the semantics
of sentences, because this is a harder problem that would greatly help in a large
number of fields, including machine translation. In fact, you have to understand
what a sentence is about if you want to translate it correctly. We thus decided to
end our work on translation and dive into the world of sentence compression.

34

Chapter 5
Compression

In this chapter, we present the second part of our work that focused on compress-
ing sentences using neural networks. As explained in the end the previous chapter,
our work on translation can be related to compression: we were taking sentences
of arbitrary length and mapping them to a features vector of dimension d, to later
compare these vectors between sentences. Basically, this features vector can be
seen as a compressed representation of a sentence. However, because of the ”bag
of words” approach we used by taking the mean of all the words of the sentence,
we lost a lot of information.

5.1 General Idea

We thus decided to try a new approach, still based on the idea of embedding
words (and sentences) into a d-dimensional space, but this time with a different
purpose than translation: semantic compression. We want to have an encoded
representation that gives information about the meaning of the sentence. With
the huge amount of data available everywhere on the web, we are more than ever
in need of solutions for indexing, sorting, grouping and comparing text documents.
However, comparing two texts is difficult: one could be short and summarized and
the other long and verbose, while still talking about the same subject. Comparing
word occurrences and extract keywords may help to find similarities between texts,
but would certainly fail when comparing a complicated article of Wikipedia in
English and its sibling in Simple English1. Having a simple way of producing an
encoded representation of sentences (and then whole documents) that synthesizes
their meaning and semantics would help greatly in that direction. Instead of
trying to compare text, we would work with points of a d-dimensional space,
allowing us to use well known tools and algorithms for clustering, sorting, and so
on.

1http://simple.wikipedia.org - Articles in the Simple English Wikipedia use fewer words
and easier grammar than the Ordinary English Wikipedia.

35

http://simple.wikipedia.org

5.1. General Idea Chapter 5. Compression

Figure 5.1: Illustration of a sentence compression. Using a compression function
h(x, y) : Rd × Rd → Rd that compresses two elements of the embedding space to
another element of this same space, we iteratively group the words of a sentence
two by two until we only have one element left. The order in which we group the
elements can vary: in this example, we used the tree shown in the upper-left part
of figure 5.2 but could have used any other.

5.1.1 Compression

Our idea is thus to find a compression function h(x, y) : Rd × Rd → Rd that
compresses two elements of a d-dimensional space to another element of this space.
Then, we would apply this function iteratively to a sentence to reduce it to a single
element of the embedding space, and use this vector as the encoded representation
of the sentence. An example of this process is shown in figure 5.1. There are
therefore two main aspects to this problem:

1. find a good candidate for the compression function h(x, y)

2. determine the optimal order in which to group the elements two by two

Indeed, as shown in figure 5.2, there are many ways of grouping a sentence
two by two2. The quality of the resulting representation may depend on the order
in which the function h is applied: maybe grouping first words that are related
(determinants with nouns, adjectives with nouns) is better than grouping the
sentence randomly, or with a left to right approach? However, finding both the
function h and the best way of grouping words at the same time would be hard.
Therefore, we first used a fixed ”left to right” tree (as pictured in the upper-right

2In fact, we can see the sequence of groupings as a binary tree, and will later refer to it as
such.

36

Chapter 5. Compression 5.2. Dataset

Figure 5.2: Illustration of four different ways of grouping the words of a sentence.
We can see that a sequence of groupings can be represented as a binary tree. We
call the upper right tree a ”left to right” tree, as we always group the two leftmost
elements.

example of figure 5.2) while learning h, and then used the resulting function h to
try and determine the optimal tree for any sentence.

5.1.2 Extraction

Once we have a compressed representation of a sentence, we could optionally want
to extract the sentence back. While this is not directly needed for comparing and
clustering text information, it could be interesting to use this scheme as any
other compression algorithm, i.e. to reduce the size of the data. To extract the
information back from the encoded representation, we need the inverse of the
compression function h−1(z) : Rd → Rd×Rd. This function can be trained jointly
with h, or separately. We also need to know in which order the elements of
the sentence were grouped, such that we could iteratively apply h−1 in the exact
opposite order to finally obtain the original sentence back. The extraction process
is illustrated in figure 5.3. The compression may however not be lossless, but as
the semantics are encoded in the compressed representation, the meaning of the
extracted sentence should hopefully be close to the original one.

5.2 Dataset

For these experiments, we used the English content of Wikipedia as a dataset.
This dataset was built by downloading a dump of English Wikipedia3, extracting
and cleaning all paragraphs (removing any non-text data, converting all words
to lower case, etc.) and finally shuffling them. The result is a random list of
more than nine millions of paragraphs, totalizing more than six hundred ninety

3available at http://download.wikimedia.org/enwiki/

37

http://download.wikimedia.org/enwiki/

5.3. First approach: Auto-encoder networks Chapter 5. Compression

Figure 5.3: Illustration of a sentence extraction. We iteratively apply the inverse
of the compression function h−1(z) : Rd → Rd×Rd to the encoded representation
of the sentence in the exact opposite order as h was applied during the compression
phase. The resulting sentence may not exactly be the same as the original one,
but should have a similar meaning.

millions of words. From this dataset, we built a dictionary of all the different
words (about two and a half millions) and sorted them by frequency. Finally, we
thresholded these words to keep only the N most frequent4 (typically, N = 1000,
5000 or 30′000) and discarded all other words while training on the dataset.

As we do not have sentences delimitation in this dataset, we cannot use actual
sentences during our training. Instead, we slide a window of a fixed size over each
paragraph, and extract all n-grams that do not contain a thresholded word. This
means that we can obtains n-grams that are split between two actual sentences
(e.g. ”on the mat . The dog was”). Ideally, we should not consider these, as they
make less sense than an actual sentence, but we are willing to pay the price of
having less than perfect data in exchange to having a very large quantity of it.

5.3 First approach: Auto-encoder networks

Our first approach was to use an auto-encoder network to learn both h and h−1 at
the same time, and them use the two compression and extraction parts separately.

4On more than 2.5 millions words, only 100’000 of them appear 100 times or more in the
whole wikipedia dataset. Most of the words are thus rare words, and are not worth considering
during the training of the network.

38

Chapter 5. Compression 5.3. First approach: Auto-encoder networks

Figure 5.4: Example of an auto-encoder network. Such network is usually sym-
metric and has the same number n of inputs and outputs, along with a number
m < n of hidden neurons.

5.3.1 Auto-encoder networks

An auto-encoder network (also called autoassociator) is a special kind of multi-
layer perceptron, that is usually symmetric. As illustrated in figure 5.4, the main
features of such a network is that it has:

1. the same number n of inputs and outputs

2. a number m < n of hidden neurons

The network is trained, using regular backpropagation techniques, to have
its output equal to the input data (this technique has several names: identity
mapping, encoding or auto-association). Once the training has converged, we can
split the network in two parts, as illustrated in figure 5.4:

• the compression part, composed of the upper part of the network

• the extraction part, composed of the lower part of the network

By taking the output of the compression part, we get a compressed (encoded)
representation of the input. Then, we can use the extraction part to get the origi-
nal data back from its encoded representation. With a linear architecture similar
to the one pictured in figure 5.4, Bourlard et al. have shown in [3] that an auto-
encoder network is equivalent to applying Principal Component Analysis5 to the
data. This means that instead of training the network, we could simply express

5Principal component analysis (PCA) involves a mathematical procedure that transforms a
number of possibly correlated variables into a smaller number of uncorrelated variables called
principal components. For more details, see [11].

39

5.3. First approach: Auto-encoder networks Chapter 5. Compression

the solution of the problem explicitly in terms of the input data, using techniques
like SVD6. This way, we would be sure to get the optimal solution, whereas a
classical error backpropagation algorithm could get stuck in a local minima.

It is also possible to add more hidden layers before and after the encoded
representation, this time with non-linear transfer functions like the hyperbolic
tangent. It as been a common misperception in the Neural Network community
that even with non-linearities, auto-encoder networks trained with backpropaga-
tion are equivalent to linear methods such as PCA, as claimed by [3]. Japkowicz
et al. have shown in [7] that this is not the case: non-linear autoassociators be-
have actually differently from linear methods, can outperform them in projection
or classification tasks and are even able to perform non-linear classification.

5.3.2 Network architecture

As explained in section 2.3 and in the previous chapter, working directly with
text is not really convenient. Hence, we replaced each word with its index in the
dictionary. Then, when considering a sentence s = {x1, x2, ..., xl}, xi ∈ {1, N},
we first ran it through a lookup table that maps each index to a vector in the
embedding space. We obtained the matrix S = (w1|w2...|wl), wi ∈ Rd. Then, we
could iteratively apply h to any two columns of this matrix, regardless if they
were word vectors from the lookup table or results of previous applications of h.

The function h can simply be implemented as the compression part of an
auto-encoder network, and h−1 as the extraction part of the same network, as
illustrated in figure 5.5. We tried both linear and non-linear setups, the non-
linear simply adding a hidden layer with nHU hidden units and a non-linear
transfer function as shown in figure 5.6.

5.3.3 Local optimization

We first tried to optimize our network locally: each time we compress two vec-
tors x, y, we extract them back from their encoded representation, and want the
extractions to be as close as possible to the original vectors. To do so, we use a
mean squared error criterion, defined as follows:

Lw(x) =
1
d

d∑
i=1

(xi − fi(x,w))2

where x is the concatenation of the two d-dimensional input vectors, and
f(x,w) the function that compresses and the extracts these two vectors, i.e.
f(x,w) = h−1(h(x,w), w). This error is backpropagated through both the com-

6Singular Value Decomposition

40

Chapter 5. Compression 5.3. First approach: Auto-encoder networks

Figure 5.5: Implementation of the compression function h and extraction function
h−1 as a linear auto-encoder network with 2d inputs/outputs and d compressed
units.

Figure 5.6: Implementation of the compression function h and extraction function
h−1 as a non-linear auto-encoder network with 2d inputs/outputs, nHU hidden
units and d compressed units.

41

5.3. First approach: Auto-encoder networks Chapter 5. Compression

Figure 5.7: Example of the training of the network with a sentence of length l = 4.
The two first word vectors are forwarded through both compression and extraction
part, and the mean squared error is backpropagated. The same is done with the
third and fourth word vectors. Finally, the two outputs of the compression part
obtained before are taken and forwarded through the auto-encoder, and the mean
squared error is backpropagated. The output of the third compression is used as
the encoded representation of the sentence.

pression and extraction parts of the auto-encoder for each pair of vectors, thus
l − 1 times per sentence, as illustrated in figure 5.7.

We chose to use this local approach because we felt that the global one (com-
pressing a whole sentence to its encoded representation, then extracting it back
and measuring the distance between the original words and the extracted ones)
would be too hard to train. Indeed, a sentence of ten words (which is quite small)
already implies to forward through nine compression networks and nine extrac-
tion networks. Backpropagating the error through this deep architecture would
end up with very small gradients in the first layers, resulting in the first networks
never to be trained. The local approach, however, is more like a greedy solution,
that minimizes the error at each intermediate step of the compression, instead of
doing it only once globally.

The performance of our network is evaluated by looking at the mean squared
distance between the input vectors of the auto-encoder and its output vectors,
on a test set. While this measure indicates if the network is correctly training
as we want, it does not give any information whether we could correctly extract
the sentence or not. Thus, we used a second measure during the test phase: the

42

Chapter 5. Compression 5.3. First approach: Auto-encoder networks

proportion of correct extractions. This proportion is defined as the percentage of
words for which the closest vector to the extracted word vector in the embedding
space is the original word vector itself. Algorithm 3 shows how it is computed.

Algorithm 3 Computation of the proportion of correct extractions.
for each sentence s do

replace each word index i of s by the corresponding word vector wi
compress s to its encoded representation z
extract s′ back from z
for each word vector w′i of s′ do

find the closest word vector wj to w′i in the embedding space
count how often i = j, i.e. the closet word is actually the original one

end for
end for

Results

When we obtained our first results, we observed that a decreasing mean squared
error did not translate to better proportions of correct extractions. Besides, these
proportions were good with short sentences (of size 2 or 3) but quickly decreased
when considering longer sentences, suggesting that the greedy solution of opti-
mizing the mean squared error at each step of the compression was not the right
choice for having good extraction performances.

5.3.4 Global optimization

Thus, we changed our training method to use an end-to-end technique: instead
of considering each compression step separately and backpropagating the error
locally, we performed the full compression and extraction process on the sentence,
and evaluated the distance directly between the original word vectors and their
corresponding extracted vectors. Then, we backpropagated this error through
the whole extraction and compression networks. Figure 5.8 illustrates this new
training scheme.

The main drawback of this end-to-end approach is that it limits the length
of sentence that can be trained. Indeed, as explained above, the full processing
of one sentence of length l requires l − 1 compressions and the same number of
extractions. This means that the error will be backpropagated l−1 times through
both the extraction and compression parts of our auto-encoder. The gradients
decreasing at each step, the upper layers might never get significant gradients,
and thus would never be learned.

43

5.3. First approach: Auto-encoder networks Chapter 5. Compression

Figure 5.8: Second version of the training scheme: contrary to the one pictured in
figure 5.7, the error is only computed once between the original word vectors and
the final extracted vectors, and then backpropagated directly through the whole
network.

5.3.5 Results

Figure 5.9 shows the mean squared error between the original word vectors and
the extracted ones, in function of the number of iterations, with both linear and
non-linear networks, and for different sentences length l. Figure 5.10 shows the
corresponding proportions of correct extractions. While our results are particu-
larly noisy7, we clearly see that decreasing the global mean squared error increases
the proportion of correct extractions, especially for non-linear networks.

Moreover, while extracting nearly perfectly pairs of words, the linear auto-
encoder quickly shows its limits when increasing the length of the sentence. The
non-linear one is more difficult to train and thus takes longer to get good results,
but is able to extract longer sentences with a much higher success rate. Again,
by observing the slopes of the different curves, our graphs suggest that we could
have obtained better results by training longer.

However, we wanted to do some more testing before pursuing in this direction.
Indeed, the pretty good extraction results seemed to imply that our network was

7Evaluating the proportion of correct extractions is pretty costly, because it implies com-
puting the distance of each word of the dictionary to each extracted word vector. Thus, with
30’000 words in our dictionary, we had to use a testing set of limited size (100 paragraphs of
approximatively 70 words in average), thus resulting in a big variance of our measure.

44

Chapter 5. Compression 5.4. Second approach: Ranking

Figure 5.9: Mean squared error in function of the number of iterations and with
different configurations.

actually doing what we wanted: learning the semantics. To verify this, we had
a look at the embedding space and compared words to their closest neighbors,
similarly to what we did in the previous chapter. If everything had worked well,
it should have learned that, for example, ”men” and ”women” are similar con-
cepts and thus have a similar representation in the embedding space. But the
results were totally different: word embeddings made no sense, as if they had not
moved from the randomly generated position they were assigned to during the
initialization of our network.

We suspect that instead of making the network learn the semantics, this crite-
rion allowed it to get away with applying some tricks to its inputs (e.g. concate-
nating parts of the input vectors) and still obtain good results. We thus had to
find another criterion that would compel the network to understand the meanings
of the sentences, instead of simply applying some tricks on vectors.

5.4 Second approach: Ranking

Our second approach is based on a different way of training our network: instead
of relying on the distance between the input and the output (this idea was inspired
by auto-encoder networks), we introduce a notion of a score score(z) attributed
to the encoded representation z of a sentence s. Then, we train the network such

45

5.4. Second approach: Ranking Chapter 5. Compression

Figure 5.10: Proportion of correct extractions of pairs of vectors using a mean-
squared error criterion, in function of the number of iterations and with different
configurations.

that the score of a sentence from the dataset is higher than the score of the same
sentence with one word randomly replaced. This score can be seen as an indica-
tor whether a given sentence is ”correct” or not. By teaching the network how
to differentiate the encoded representation of a correct sentence from the one of a
wrong sentence, we should hopefully make it deduce an embedding of the words
that makes sense.

5.4.1 Network architecture

The compression part is the same as the one we used so far, in both linear and
non linear flavors, and the score function is simply implemented as a linear layer
with d inputs and one output, that is appended to the last compression step, as
shown in figure 5.11. Again, we train the network in a end-to-end manner, by
forwarding both positive and negative examples through the network to obtain
their encoded representations, computing their score, evaluating the error and
finally backpropagating it through the whole network.

46

Chapter 5. Compression 5.4. Second approach: Ranking

Figure 5.11: Illustration of the last compression step with the ranking criterion:
the compression layer (linear or not) is the same as before, and a linear layer with
d inputs and one output is simply appended next.

5.4.2 Loss function

Similarly to the first part of our work presented in the previous chapter, we used
a margin ranking criterion for this learning task:

Lw(x) = max(0, 1− fw(spos) + fw(sneg))

where spos and sneg are respectively the correct and wrong sentence and fw(s)
is the score of the encoded representation of a sentence s.

We started to group words differently from this point, using randomly gener-
ated trees in addition to left to right trees, to make sure that the network did not
take advantage of any regularity in the way words were grouped and use some
concatenation tricks to build the encoded representation. We also tried two differ-
ent schemes to generated the ”wrong sentences”: either replacing always the last
word of each sentence by a random word, or randomly choosing for each sentence
which word to replace.

To evaluate the performance of the network, we computed the rank of each
sentence of the test set. This rank is defined similarly to the rank we used in the
previous chapter: for a given sentence, we generate all possible negative samples
by replacing one word by all the other words of the dictionary, and compute the
score of each of these negative samples. Then, we sort them by decreasing score,
and use the position of the correct sentence in the sorted list as its rank. Hence,
a rank of one means that the correct sentence has a better score than all other
negative samples. However, this cannot be achieved for all sentences, because
some of the ”negative” samples may actually be sentences that are correct, e.g.
replacing the word ”house” by ”building” in a sentence will result in something
grammatically correct in English, and should have a high score. Thus, we want

47

5.4. Second approach: Ranking Chapter 5. Compression

the average rank of all sentences to be as high as possible, but cannot expect it
to be one.

5.4.3 Implementation

We implemented these compression and extraction networks as modules in Torch.
They allow to use any kind of tree for grouping words, and any kind of compres-
sion/extraction network. Moreover, we coded them following the architecture of
a Module of the nn package (presented in chapter 3). This means that these
compression/extraction trees can be included as modules in new or existing net-
works transparently, and can be trained the same way other modules are. Thus,
it allows to easily build the kind of networks we used during our experiments, as
illustrated in figure 5.12, without much effort for someone familiar with the Torch
framework.

5.4.4 Results

Figure 5.13 shows the results we obtained. We used an embedding dimension
d = 50, a dictionary of 1000 words, a sentence length l = 5 (some configurations,
marked as ”fixed” on the graph, were using n-grams of length five only, whereas
other used n-grams of random sizes between two and five) and the non-linear ver-
sion of the compression network with two hundred and fifty hidden units, as this
setup has shown some of the best results in the previous experiments while being
small enough to train reasonably fast.

The first observation that can be made by looking at these results is that left
to right tree are no better than random trees. They both give the same kind of
results in any configuration. However, this is a good thing, as it means that our
network does not use any trick that depends on the regularity of the way words
are combined. Moreover, training on n-grams of fixed length clearly gives better
results than training on random lengths, or at least achieves them faster. The
main reason for this is that using a fixed length always trains the network on the
harder case, whereas random lengths will make it train for example on pairs of
words one quarter of the time, which is really easier. Finally, results show that
replacing always the last word to generate negative samples, or choosing which
word to replace randomly for each sentence, does not influence the results. This
is a major result, as previous attempts by Collobert et al., in the case of language
models, were never able to learn similar tasks by replacing words randomly: they
had to set a fixed position in order to make their network converge.

Overall, the best performance we obtained was with a fixed length, random
trees and choosing the position of the word to replace randomly to generate nega-
tive samples. In this setup, the best average rank was 25.45, with the worst rank
being 1000. As explained before, we could not expect the average rank to be very

48

Chapter 5. Compression 5.4. Second approach: Ranking

−− de f i n e the grouping t r e e f o r a sentence o f l e n g t h 6
t r e e = { { 1 , { 2 , 3 } } , { 4 , { 5 , 6 } } }

−− decompose t r e e in s t e p s
s t ep s = decompose (t r e e)

−− b u i l d compression par t (f unc t i on h)
mlpComp = nn . Linear (10 , 5)

−− b u i l d the complete network as a sequence o f t h r e e modules
mlp = nn . Sequent i a l ()

−− f i r s t module :
−− l e a rn s how to embed 100 words in a 5−dimensiona l space
mlp : add (nn . LookupTable (100 , 5))

−− second module :
−− c r ea t e s a compression t r e e wi th the g iven compression
−− network and compression s t e p s
mlp : add (nn . CompressTree (mlpComp , s t ep s))

−− t h i r d module :
−− score l a y e r
mlp : add (nn . Linear (5 , 1))

−− c r ea t i n g input :
−− sentence wi th words repre sen t ed by t h e i r index in a d i c t i ona r y
input = lab . new(10 , 4 , 7 , 29 , 12 , 84)

−− ge t sentence score
s c o r e = mlp : forward (input)

Figure 5.12: Example of usage of our CompressTree module: we create a network
composed of a lookup table (that maps word indices to vectors in 5 dimensions),
a compression tree (that uses a linear compression network, mlpComp, and applies
it in the order defined by steps) and a score layer (a simple linear layer that
maps 5-dimensional vectors to a scalar). Then, we create a sentence and forward
it through the network to get its score.

49

5.4. Second approach: Ranking Chapter 5. Compression

Figure 5.13: Average rank of the sentences in the test set in function of the number
of iterations, on a dictionary of 1000 words, with different ways of grouping words
and generating negative samples. The compression part is the non-linear one with
250 hidden units, both trees and position of negative word are random, and the
dimension of the embedding space 50.

close to one, as the negative samples generated may sometimes be actually correct
sentences, and thus have a good score.

Other n-grams lengths were also tried, to verify that the network was actu-
ally able to learn them and was not limited to small lengths. We again used
an embedding dimension d = 50 and the non-linear compression network with
nHU = 250 hidden units. This time, the dictionary size was 5’000 words, and
we used random trees and a random position for changing one word in negative
samples. The best average rank we obtained was a 335 with n-grams of length 10,
which is quite encouraging. More detailed results are shown in figure 5.14. While
these results are comparatively worse than the one we obtained with a smaller
dictionary, this is explained by the fact that this task is more difficult. Moreover,
these experiments were run at the very end of our project, and the still slightly
decreasing slope of the training errors suggests that there is still room for some
improvement.

50

Chapter 5. Compression 5.4. Second approach: Ranking

Figure 5.14: Average rank of the sentences in the test set in function of the number
of iterations, on a dictionary of 5000 words, with different n-grams lengths. The
compression part is the non-linear one with 250 hidden units, both trees and
position of negative word are random, and the dimension of the embedding space
50.

51

5.4. Second approach: Ranking Chapter 5. Compression

two year red city women france
three week blue town children italy
four day black village artists australia
six season green church men germany
five years russian state characters canada

eight world mountain county individuals england
seven post gold river players europe
ten match white community families china

many months brown area people paris
several election southern university groups ireland
most period japanese island teams japan

Figure 5.15: Selected words and their closest neighbors in the embedding space
built by a network trained with n-grams of fixed length of 5, a dictionary of 1000
words, embedding space of dimension 50, random trees and random position of
the word replace for generating random samples.

5.4.5 A look at the resulting embedding

Finally, we did some exploration in the embedding space, to see if the promising
results obtained before actually meant that our network had built a sensible em-
bedding for words. We first took some selected words, and looked for their closest
neighbors in the embedding space (using the Euclidean metric), as presented in
figure 5.15. We see that words are semantically grouped, or at least are related.
The embedding captures several features of the words, whether they are adjec-
tives or nouns, singular or plural, etc. The same kind of results were obtained
by Collobert et al. in [4], but our architecture is more flexible: we both consider
n-grams of fixed length while training, but where they only support replacing the
middle word of the sentence, and use a kind of bag-of-word approach, we support
any kind of grouping and replacing for our sentences.

Furthermore, while their language model can only assess relations between
words, we can use our architecture to analyze relations between n-grams of any
size. Basically, we only have to compute their encoded representation, and then
are able to compare them directly, regardless if they represent a pair of words,
a full sentence or even a whole document. The only caveat is that you have to
compute all existing n-grams to find the closest one. This means that to find the
closest pair of words to a given pair, if using a dictionary of N words, we have to
compute the score of all the N2 different pairs and sort them to find the closest
one. While this is feasible for n-grams of length two and small dictionaries, it is
clearly too costly for longer sentences and real-world dictionaries. However, as
a proof of concept, we selected a few pairs of words, and looked for the closest
pairs in the embedding space using a limited dictionary. Figure 5.16 shows some

52

Chapter 5. Compression 5.5. Finding best tree

last year red house the city two men
first year french house the town three men
same year rock house the church four men
first day red court the village two children

third year german house the state two women
first season black house the country three children

Figure 5.16: Selected pairs and their closest neighbors in the embedding space
built by a network trained with n-grams of fixed length of 5, a dictionary of 1000
words, embedding space of dimension 50, random trees and random position of
the word replace for generating random samples. The dictionary was limited to
the 500 most frequent words when computing all the possible pairs.

selected pairs of words and their closest neighbors in the embedding space. Again,
we see that they are have a close meaning, or at least are related.

5.5 Finding best tree

Finally, having a decent candidate for our compression function h, we tried to
find the best way of grouping words. An important observation is that it is an
iterative process: we start with a sentence of length l, select two consecutive words
to group, apply h and replace them by the resulting encoded representation. We
repeat these operations l−1 times, i.e. until we have only one vector left, which is
the encoded representation of the sentence. This observation leads to an obvious
greedy algorithm for grouping words.

5.5.1 Greedy algorithm

For this algorithm, we make use of the notion of score introduced in the last sec-
tion. This score can be seen as a mark attributed to an encoded representation
that qualifies its quality: correct sentences should have a good encoded represen-
tation, and wrong sentences a bad one. Hence, we can make use of this score
to build a simple algorithm that will greedily select at each step the best pair of
words to group. This method is detailed in algorithm 4 and illustrated in figure
5.17.

We only had the opportunity to try our algorithm using a well-trained com-
pression and ranking network in the very end of our project, and thus cannot
yield many results nor really assess its performance. We did however achieve an
average rank of 16 when using the tree computed by our algorithm to compress
sentences, and a dictionary of 1000 words, which is an encouraging results when
compared to the best rank of 25 obtained with random trees. Figure 5.18 shows
some examples of the trees selected by our greedy algorithm when presented with

53

5.5. Finding best tree Chapter 5. Compression

Algorithm 4 Greedy algorithm to determine how to group words when com-
pressing a given sentence.

while s has more than one element do
for each pair of two consecutive elements of s do

compute the score of the compressed representation of the pair
end for
select the pair that has the best score
remove the two elements from s
insert their compressed representation

end while

Figure 5.17: Illustration of our greedy algorithm: when presented a sentence, com-
pute the score of the compressed representations of all pairs of consecutive words,
and select the best one (in blue). Replace the two words by their compressed
representation, and repeat until the sentence has only one element left.

54

Chapter 5. Compression 5.5. Finding best tree

Figure 5.18: Examples of the trees selected by our greedy algorithm on n-grams
of different sizes.

different n-grams. Having no real mean of evaluating the correctness of such trees,
we can only observe that most of the chosen groupings make sense.

55

56

Chapter 6
Conclusion

This chapter concludes our work. At the beginning of this document, we pre-
sented both Machine Translation and Sentence Compression fields, and explained
the challenges awaiting us in both of them, and how we would try to take them
up. We first succeeded in building a neural network that was able to learn how
to translate from n-grams to n-grams, in any languages, provided that aligned
sentences are available for training. However, it clearly showed its limitations
when translating full sentences instead of simple n-grams. We will propose some
extensions to try and circumvent this limitation in the next section, but transla-
tion remains, in our opinion, an open problem. Good translation tools will need
to go a step further and start to actually understand the true meanings of what
they are trying to translate.

This is where the second part of our work comes into play. We built a flexible
network that is able to embed any sentence into a d-dimensional space by itera-
tively applying a compression function to its elements two by two. It can use any
kind of network for the compression phase, and combine the words in any order.
While we were able to obtain good candidates for the compression function, we
were not able to find the optimal way of combining words. Again, we will try
to set some directions for improving this part in the next section. However, our
architecture provides a good starting point for further experiments, being more
powerful and flexible than traditional neural networks language models.

6.1 Future work

To conclude, we will now propose some ideas for continuing the work presented
in this report.

57

6.1. Future work Chapter 6. Conclusion

6.1.1 Translating whole sentences

The translation system we built in chapter 4 is not really suited for translating
whole sentences. However, if one still wanted to translate whole sentences, we
can give here some hints about the direction to follow. As explained, our system
can perform good n-grams to n-grams translations. Thus, when presentend with
a sentence s of length l to translate, we could imagine taking all n-grams of size
1 to l, and computing the corresponding k closest n-grams of the same size in
the other language. Then, finding the best translation would only be a matter of
selecting some of these n-grams, combining them, and maybe rearranging them
(the order of the words may change from one language to the other), in order to
be as close as possible to the original sentence in the embedding space.

6.1.2 Improving the greedy algorithm

In section 5.5, we presented a simple version of a greedy algorithm that we used
to find good ways of grouping words. While our approach has obtained a lower
average rank than using random trees, it makes by construction choices that are
locally optimal, and thus has few chances to end on a global optimum.

We could instead design an algorithm that makes its decisions in a global way,
based on the following observation: grouping words in a sentence can be seen as
a sequence of decisions. Indeed, suppose we start with a stack that contains the
first word of the sentence. We consider each word of the sentence successively,
starting from the second one. At each step, we have two possible decisions:

1. pop the stack, combine the current word with the one that was popped, and
push the result of the combination on the stack

2. push the current word on the stack

We can then attribute a cost to each of these choices, and run an algorithm
similar to a Viterbi algorithm to find the globally optimal sequence of decisions.
The costs themselves are still to be defined, but we feel that such an approach
may achieve interesting results.

58

Bibliography

[1] Neural net language models. Scholarpedia, 3(1):3881, 2008.

[2] Léon Bottou. Stochastic learning. In Olivier Bousquet and Ulrike von
Luxburg, editors, Advanced Lectures on Machine Learning, Lecture Notes
in Artificial Intelligence, LNAI 3176, pages 146–168. Springer Verlag, Berlin,
2004.

[3] Hervé Bourlard. Auto-association by multilayer perceptrons and singular
value decomposition. IDIAP-RR 16, IDIAP, 2000.

[4] R. Collobert and J. Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In International
Conference on Machine Learning, ICML, 2008.

[5] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular
machine learning software library. Technical Report IDIAP-RR 02-46, IDIAP,
2002.

[6] Ronan Collobert and Jason Weston. A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning. Interna-
tional Conference on Machine Learning, ICML, 2008.

[7] Nathalie Japkowicz, Stephen J. Hanson, and Mark A. Gluck. Nonlinear
autoassociation is not equivalent to pca. Neural Computation, 12:531–545,
2000.

[8] Philipp Koehn. Europarl: A parallel corpus for statistical machine transla-
tion. MT Summit, 2005.

[9] Frank Rosenblatt. The perceptron: A perceiving and recognizing automaton.
Technical Report 85-460-1, Ithaca, New York, January 1957.

[10] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

59

Bibliography Bibliography

[11] Wikipedia. Principal components analysis — wikipedia, the free encyclope-
dia, 2009. [Online; accessed 4-March-2009].

60

	Introduction
	Theory
	Neural networks
	A sequence of operations
	Backpropagation
	Stochastic Gradient Descent
	Example: linear layer

	Transfer function
	Embedding

	Torch
	Modular architecture
	Ease of use

	Translation
	Europarl Parallel Corpus
	Using words only
	Network Architecture
	Training algorithm
	Loss function
	Performance evaluation
	Results

	Extending to n-grams
	Network architecture
	Results
	Discussion

	Compression
	General Idea
	Compression
	Extraction

	Dataset
	First approach: Auto-encoder networks
	Auto-encoder networks
	Network architecture
	Local optimization
	Global optimization
	Results

	Second approach: Ranking
	Network architecture
	Loss function
	Implementation
	Results
	A look at the resulting embedding

	Finding best tree
	Greedy algorithm

	Conclusion
	Future work
	Translating whole sentences
	Improving the greedy algorithm

	Bibliography

